圆的周长教案1
一、设计思路
本节课的教学内容是六年级“圆的周长”,教学确立基础与发展并重的教学目标,着眼点不仅仅关注学生有没有理解圆周长的意义。能不能运用公式计算圆的周长,而是如何来激疑,把学生身边的问题数学化,并以“问题”为主线,通过“猜想——验证”“探索——发现”来展开学生探索知识的发生发展过程,促使学生主动探索,从而发现知识的一些规律和方法,并努力为学生提供解决实际问题的机会,在实际运用中培养学生的创新意识。
二、教学过程与设计意图
教学目标:
1、创设情景学生通过猜想、尝试、验证、掌握圆周率的近似值,理解和掌握圆周长公式,并能正确运用计算圆的周长和解答有关简单的实际问题。
2、结合教学内容进行爱国主义教育,激发学生民族自豪感。
3、培养学生大胆猜想、勤于思考、勇于探索的优良品质。
教学重点:掌握理解圆的周长公式推导过程
教学过程:
A、创设情境·激疑——提出问题
(出示摩托车里程表)
(1)师:这里为什么能反映摩托车行的路程呢?
(学生思考后师出示有计数器的跳绳作提示)
(2)师:你们跳过绳吗?你想到了什么?生答:和车轮滚动的圈数有关。
(3)师:你们知道滚动一圈的长度是什么吗?生答:圆的周长。
(4)师:用硬纸板表示车轮,请你摸摸它的周长(揭示课题)。
(5)用直尺测量圆的周长,你感到方便吗?能不能找到比较简便的方法?
设计意图:数学知识来源于生活,从学生熟悉的、感兴趣的事物入手,有利于学生主动探索知识,以往在教学圆周长的过程往往比较注重公式的运用,比如计算圆形水池的周长等等,看似和学生比较贴近,但实际有几个同学看见过圆形的水池,而且计算圆形的水池又有什么作用,这样所谓的实际问题是为了应用而应用,无法激起学生学习的欲望,因此,我设计这样一个情境,摩托车的里程表为什么能反映摩托车行的路程,并引导学生从跳绳的计数器上去思考,把学生身边的问题数学化,为学生提供解决实际问题的机会,使他们感受到所学的知识能运用于生活。
B、师生共同提出假设
(1)请学生回忆正方形周长和边长的关系(边长×4)。
(2)师:能不能求圆周长时也找到这样的倍数关系呢?
(3)师:测量的圆的什么比较方便呢?生答:半径、直径
(4)师:请学生先画几条长短不一的线段作直径画圆
(5)师:观察自己画的圆你发现了什么?
学生仔细观察分小小组讨论研究圆的周长和直径是否存在倍数关系
(6)师:你估计周长是直径的几倍?
学生猜想:生1:3倍左右,生2:2倍左右,生3:5倍左右
(7)师:你有办法验证吗?学生讨论
演示:用绳绕的方法验证(3倍多一点)
设计意图:学生对于关联知识的迁移是很有经验的,比如平行四边形、三角形、梯形面积的计算都是转化成已学过的图形来推导面积计算公式的,求正方形的周长可以用边长乘以4,圆的周长和直径或者半径有没有这样的关系呢?通过学生画大小不同的圆,让学生感到圆的周长和直径可能有一定的倍数关系,在学生的猜想后,通过绳绕的方法加以证明,使学生确信周长和直径存在着一定的倍数关系,到底是3倍多多少呢?是不是一个固定的数?需要通过比较精确的测量、计算才能证明。整个过程是让学生通过“猜想——验证”促使学生积极主动探索知识的。我想“猜想——验证”不仅激发了学生学习的兴趣,而且我认为运用这种数学思想去思考问题正是培养学生创新思想和创新能力的有效途径。
C、探索问题解决的方法·发现——构建新知
(1)师:你还有别的办法研究圆的周长和直径的关系吗?
(可以用绳绕滚动的办法分别测量一些圆的周长)
(2)学生在小小组内动手操作、测量进行验证
直径(厘米)周长(厘米)周长是直径的几倍
26.23倍多一点
39.13倍多一点
412.93倍多一点
(3)小结
a、圆的.周长÷直径=3倍多一点经过科学家精密的测量,计算发现这个3倍多一点是一个固定数叫圆周率3.1415926……是一个无限不循环小数,我们在计算时通常取3.14,用字母л表示,(请学生写一写л)
b、结合圆周率进行爱国主义教育
师生共同推导计算圆的周长公式:(C=лd或C=2лr)
D、运用新知识解决数学问题
(1)学生尝试例题求圆的周长
(2)基本练习(略)
设计意图:通过实践、计算,确认圆的周长是直径的三倍多一些,在实践过程培养学生的合作、交流能力,使学生感受到小组合作形成的合力的作用。师生共同推导出求圆周长的计算公式,并通过一些基本题的练习使学生形成基本的技能。
E、评价体验
(1)师:这节课研究了什么?
生1:周长和直径的关系
生2:圆的周长=直径×圆周率,即C=лd或C=2лd
(2)师:(出示一棵古树图片)你能测量它的直径吗?
生答:砍下来量一量
师问:这个方法简单,你们同意吗?学生思考后回答:
生1:用绳子绕一圈,这就是周长然后用周长除以л就得到直径
生2:在古树中间钻个小孔,量一量
生3:用四个木头搭成一个正方形,边长就是直径
(3)师:你能根据今天所学的知识计算你家到学校大约有多远吗?(用计数器的跳绳作提示)学生讨论后回答:
生1:量一量车轮的直径算出周长,再数数车轮转动了几圈,算一算就行了。(师提醒:那不是最安全)
生2:用根长绳让它跟着轮子转
生3:装一个象跳绳一样的计数器,再算一算。
师:对!摩托车的里程表就是根据这个原理,它就像一个乘法运算机器,车轮的周长是固定的,转数是变动的,从你家到学校的距离之所以能显示在里程表上,就是车轮周长乘以转动的圈数得到的。
设计意图:通过学生动手、动脑、动口,自主地探究知识,发现已知直径(半径)求圆周长的方法,并通过一定的基本训练后学生已经形成了一定技能,如何再让这些数学知识回到生活,让学生感到所学的数学知识有用呢?我设计了测量一棵古树的直径和计算你家到学校大约有多远这样两个问题,为学生提供广阔的讨论空间,因为这些问题就在学生的身边,会让学生感到“有想头”、“有意思”,学生也愿意反复讨论这些问题。这样可以点燃学生的创新意识、创造性思维的火花。
三、实践反思
1、联系学生生活实际,有利于激发学生学习的兴趣。
华罗庚指出,对数学产生枯乏味、神秘难懂的印象的原因之一便是脱离实际。本节课一开始出示摩托车的里程表,有计数的跳绳,是学生非常熟悉的,贴近学生生活的实际,体会到“圆的周长”和我们的生活是息息相关,大大调动了学生学习的积极性,并为后面学生解决一些实际问题,培养学生的创新意识埋下伏笔。
2、让学生带着问题去学习,有利于学生主动探索知识
美国数学家哈尔莫斯(P.Rhalmos)有句名言:问题是数学的心脏。我国著名教育家顾明远也说过“不会提问的学生不是好学生”,“学问就是要学会问”。但是怎样才能让学生感到有问题呢?教师必须启发学生主动想象,去挖掘去追溯问题的源泉,去建立各种联系和关系,使学生意识到问题的存在。我在本节课先创设一个问题情境,使学生感悟到:必须先要知道圆的周长,而直接测量圆的周长很麻烦,有没有更简单的办法?促使学生去寻找解决问题的办法,通过“猜想——验证”“探索——发现”圆周长的计算方法后,又提出测量一棵古树的直径你有什么好主意?如果测量你家到学校的距离你有什么办法?这是两个和学生生活紧密结合的问题,学生有感而发的方法有很多,学生的回答应该说是非常精彩的,这既让学生灵活运用了圆周长公式(可以测量周长再计算直径)并呼应了课堂的导入,又激发了学生的学习兴趣,激活了学生的思维,培养了学生的创新意识。其效果真可谓“鱼与熊掌”兼得。
3、提高应用意识,努力体现课堂教学的开放性。
生活问题数学化,数学知识生活化,把所学的知识应用于生活实际,不但可以使学生感到我们所学的知识是有用的,而且有利于提高学生灵活应用知识的本领,我在本节课的最后部分安排了两个生活问题,并都是“以你……”的语气陈述,努力使学生能身临其境,当解决问题的主人,提高学生的应用意识,由于我们身边的问题答案往往不是唯一的,如计算你家到学校大约有多远?许多同学都想到先数自行车车轮转了多少圈,用周长乘以圈数,对于怎样数车轮有的同学提出直接数,还的同学甚至想到了用一根长绳让它跟着轮子转,看看它转了多少圈(这些都是学生直接的生活经验),也有一些同学提出了在自行车上装一个计数器的办法,不但培养了学生开放型的思维方式,还激发了学生去动动手的愿望。
4、要讨论和研究的问题
(1)在用绳绕的方法验证周长是直径的三倍多一点,有没有必要再让学生去实践,通过计算再验证周长和直径的关系?
(2)如果在发现知识过程中人有一小部分同学得出了方法,教师是想设法再让其他学生继续探究、发现,还是让这些同学代替老师把答案告诉大家呢?
圆的周长教案2
教学目标:
1.使学生进一步掌握圆的周长计算公式,能应用公式求圆的直径或半径,正确解决求圆的直径或半径的简单实际问题。
2.使学生通过圆的周长公式的实际应用,进一步掌握圆的半径、直径和周长间的关系,感受利用公式列方程解决简单实际问题的过程,提高分析和解决问题的能力。
3.使学生感受平面图形的学习价值,提高数学学习的兴趣和学好数学的信心。
教学重点:
探索已知圆的周长,求这个圆的直径或半径的方法
教学难点:
运用圆的周长公式解决实际问题
教学过程:
一、复习引入
1.什么是圆的周长?圆的周长计算公式是什么?
2.把圆规两脚尖分开4厘米画一个圆,这个圆的半径是多少?直径呢?周长呢?
指名回答,明确计算方法。
3.知道圆的直径和半径,我们能很快算出圆的周长。如果只知道圆的周长,我们能算出它的直径和半径吗?今天这节课我们来继续研究圆周长的知识。
二、自主先学
出示例6和导学单
1.题中的已知条件和所求问题是什么?。
2.如何准确地测算出这个花坛的直径?
3.还有别的方法吗?
三、小组讨论
四、交流展示
方法一:列方程解答。解:设花坛的直径是x米。
3.14x=251.2
x=251.23.14
x=80
答:花坛的直径是80米。
方法二:算术方法解答。251.23.14=80(米)
答:花坛的“直径是80米。
五、质疑拓展
问:两种方法有什么相同点和不同点?你喜欢什么方法?为什么?
小结:这两种方法都是根据圆周长的计算公式,列方程是顺着题意思考,用除法计算是直接利用周长公式中各部分之间的关系计算。
问:已知圆的周长,如何求圆的半径或直径?
学生回答,教师板书
①列方程解答。
②d=Cr=C2
六、检测反馈
1.完成练一练。
(1)学生独立完成。
(2)集体交流。
提醒学生估算时,可将圆周率看作3,并使学生意识到3比圆周率实际值小了一些,所以周长也应该适当估小一点。
2.完成练习十上第6题
各自填表,说说半径、直径和周长的关系
3.完成练习十四第8题。
(1)借助圆柱形教具演示,帮助学生理解什么是树干横截面
(2)学生独立思考并计算。
(3)集体交流。
4.完成练习十四第9题。
(1)理解拱门的高度的含义。
(2)学生独立计算。
(3)集体订正。
5.完成练习十四第10题。
(1)学生独立思考。
(2)集体交流,明确:先求出花圃的周长,再求出种的棵数。
6.作业:练习十四第8、10题。
七、课堂小结
通过这节课的学习,你有什么收获?
圆的周长教案3
一、教学目标
【知识与技能】
掌握圆的周长计算公式,知道周长与直径的关系,并能够利用圆的周长公式解决实际问题。
【过程与方法】
通过探究圆的周长公式的过程,培养学生观察、比较的能力,提高逻辑推理能力。
【情感态度与价值观】
积极参与数学活动,培养学习数学的兴趣。
二、教学重难点
【重点】圆的周长的计算公式。
【难点】圆的周长公式的推导过程。
三、教学过程
(一)导入新课
创设情境:多媒体展示大头儿子家的圆桌开裂,爸爸想用铁皮将圆桌固定起来的情境,请同学帮忙计算需要多长的铁皮。
学生根据问题情境不难想到计算需要的铁皮实际是计算圆一圈的长度。
教师明确,圆一圈的长度即为圆的周长。
引入课题——圆的周长。
(二)探索新知
1.探索发现
学生活动:同桌之间利用手中的圆形教具,测量圆形教具的周长。
学生汇报测量结果及测量方法。
教师引导学生思考,圆的周长大小与什么有关。
学生根据圆的特征,不难发现圆的周长与圆的大小有关,圆的大小与圆的半径、直径有关。
教师明确直径是半径的2倍,可看其中一项即可。
2.探索圆的周长与圆的直径关系
小组活动:以小组为单位,8分钟时间,利用手中不同大小的圆形教具,测量其周长及直径,并做好数据记录。观察测量结果,计算数据间的特殊关系。教师巡视,对有困难的小组及时给予指导。
小组汇报分享测量结果,教师板书。
学生分享计算结果,其中和、差、积无规律,商值在3.1左右。教师鼓励学生再多测量几组数据,并计算圆的周长与直径的比值。
学生汇报通过多次测量计算比值总在3.1左右。
教师讲解:实际圆的周长与圆的直径的比值是一个固定的数,命名为圆周率。用字母π表示,并向学生展示其写法和读法。
给出圆周率的特点:
(1)是一个无限不循环的小数;
(2)我国伟大的数学家祖冲之将其精确到小数点后七位;
(3)现在为了方便只要取小数点后两位即可。
(三)应用新知
问题:大头儿子家圆桌直径为1米,求需要买多长的铁丝?3.1米够吗?
教师强调:根据公式需要3.14米,不可四舍五入到3.1米,通过进一法,要买3.2米的铁丝。
(四)小结作业
提问:通过本节课,你有什么收获?
课后作业:回家找一个圆形,借助直尺测量,计算出周长。
圆的周长教案4
一、指导思想与理论依据:
《新课标》指出:有效的数学学习活动不能单纯的依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的的重要方式。数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。
根据这一理念,在本节课的设计上,我突出两点,一是让学生主动经历数学结论的猜想动手操作,实践验证以及表述的过程;二是对学生放手,还学生自主的空间,自主探究,合作交流的学习方式贯穿课堂的始终。
二、教材及学情分析:
教材是在学生掌握了长方形和正方形周长,并初步认识了圆的基础上学习的。它是学生初步研究曲线图形的基本方法的开始,又是后面学习“圆的面积”以及今后学习圆柱、圆锥等知识的基础。学情分析:学生虽然有计算直线图形周长的基础,但第一次接触曲线图形,概念比较抽象不容易理解,推导圆周长的计算方法、理解圆周率的含义会有一定的困难。
三、教学目标、重点及难点:
1、知识和技能:
使学生直观认识圆的周长,掌握圆的周长的计算方法,理解圆周率的意义,并能正确灵活应用计算公式解决简单的实际问题。
2、过程与方法:
(1)通过组织学生观察和实验等活动,引导学生经历“猜想-验证-归纳、概括”的学习过程,认识圆周率。
(2)经历圆的周长计算公式的发现、探索过程,培养学生分析、抽象、概括,以及发现规律的能力。
3、情感与态度:
(1)通过学生动手操作、发现,激发学习兴趣,使学生体验探究问题的乐趣;
(2)结合圆周率的介绍,使学生受到爱国主义科学精神的教育。
(3)在解决问题过程中,增强应用意识。
教学重点:
让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程理解并掌握圆的周长计算方法。
教学难点:
对圆周率的认识。
教学准备:
⒈圆形物体实物,。
⒉每个学生准备三个大小不同的圆片,一根线,一把直尺。
四、教法:
1、自主探究法。通过学生动手实践,寻求测量圆周长的方法,培养学生动手操作的能力,激活学生的思维。
2、合作交流法。合作交流是学生学习数学的主要方式。通过学生的团结协作,自主探索,讨论交流,培养学生的团结合作精神,激发学生主动学习的兴趣。
五、主要教学环节与设计:
通过以下环节教学本课:
1、创设情境,初步感知
2、合作交流,探究新知
3、实践应用,解决问题
4、畅谈收获,课外延伸
六、教学过程:
第一个环节:创设情境,初步感知师:
哪些同学会骑自行车?在骑车时,车轮向前滚动一周,行驶了多长的路程?怎样计算?(出示车轮向前滚动的录像。)
生:求行驶多长的路程就是求圆形的周长。
师:今天就来学习怎样计算圆的周长。
此环节的设计目的:从学生熟悉的自行车入手,让学生感知求车轮滚动一周就是求圆的周长,激发学生学习新知的兴趣。
第二个环节:合作交流、探究新知
(一)直观感知什么圆的周长通过以下活动帮助学生认识什么是圆的周长。
1、请你指出老师手中圆形物体的周长。准备一些实物有硬币、茶杯垫,让学生用手在圆周上滑摸等方式认识并理解圆的周长。
2、分析比较长方形、正方形和圆的周长各有什么不同?
3、指一指、描一描自己手中圆片的周长。
设计意图:让学生动手摸一摸后,初步感知圆的周长就是圆一周的长度。更增强了对圆周长的感性认识,并形象理解圆周长的意义。
(二)探究圆周长的计算方法
圆周长计算公式的推导这一内容,我安排了三个环节:
1、揭示矛盾,产生探索新知欲望。请同学们结合我们手里的圆想一想,有没有办法来测量它们的周长?
预设的几种情况:
(1)“滚动”——把实物圆沿直尺滚动一周;
(2)“缠绕”——用绳子缠绕实物圆一周并拉直;
(3)“折叠”——把圆形纸片对折几次,再进行测量和计算;
小结:以上的几种方法都是要“化曲为直”。
出示地球图片。
如果要计算地球赤道一周的长度,用刚才的绕线法、滚动法显然都无法测量怎么办?我们需要探讨求圆周长的一般方法。
设计意图:
1、这个过程中让学生明白“缠绕”、“滚动”的方法是有局限性的,引发其探索“计算公式”的积极性、必要性,为深入研究圆周长的计算问题作好了“心理”铺垫。这样的矛盾,反而更能激发学生的求知欲。
2、操作实验,探究圆周长计算方法在这一内容中,探究圆周率,理解圆周率是本课的难点,因此我设计让学生分小组合作,通过“猜想——实验验证——归纳概括得到结论”来完成。
(1)猜想,目的是让学生体会周长与直径之间的关系,重点解决“周长与什么有关”的问题。
师:圆的周长与它的什么有关呢?
生:圆的周长与它的直径有关。圆直径长,周长就大;直径短,圆周长就小。
(2)实验验证,目的是让学生发现周长与直径之间固定的倍数关系,重点解决“周长与直径有怎样的实质关系”的问题。
师:我们知道正方形周长是边长的4倍,那么圆的周长是直径的几倍呢?我们能不能像求正方形周长那样找到求圆周长的一般方法呢?
请同学们分组做个小实验,请利用手中的学具,用你喜欢的方法验证圆的周长与直径的倍数关系,记录在表格中。请你按照“我们组利用什么方法——过程怎样——结果如何”的顺序汇报实验过程
小组汇报:
生:我们测量的第一个圆直径是10厘米,周长是31厘米,周长是直径的3.1倍。第二个圆直径是2厘米,周长是6.5厘米,周长是直径的3.25倍。第三个圆直径是5.5厘米,周长是16.5厘米,周长是直径的3倍。
师:通过计算你们发现了什么?
生:每个圆的周长,都是它的直径长度的`3倍多一些。
追问:那么是不是所有的圆周长与它直径都有这种关系呢?
最后师生共同概括出:任何一个圆的周长总是它的直径长度的3倍多一些。
师:由于测量时存在误差,导致结果不太一样,这很正常。你们的研究结果已经很接近数学家的结果了。谁知道我们把这个3倍多一些的数叫做什么?
生:圆周率。
师:你对圆周率还有哪些了解?
这个3倍多一些的数经过数学家周密计算发现是一个固定不变的数,我们把这个倍数叫做圆周率。读作π。对圆周率的发现最杰出的贡献者是祖冲之。圆周率是一个无限小数,在科技飞速发展的今天,计算机已经计算到了小数点后上亿位。小学阶段取它的近似值为3.14。板书:π≈3.14(出示相关的资料)
设计意图:通过同学们在小组中操作、交流、观察等活动,亲历感悟发现知识,达到理解的目的。圆周率有的学生早已知道,圆周率的有关知识是在师生共同补充交流中得到的,体现以学生为主体。祖冲之的事迹是一个非常好的爱国主义教育的典型。使学生感受到中国文化的博大精深,发展学生的情感态度价值观目标。
(3)得出结论师:你知道圆周长的计算方法了吗?
生:知道。
板书公式:C=πd,C=2πr
设计意图:推导圆周长公式,解决好了圆周率的问题,圆的周长的计算方法只是水到渠成的结果。
第三个环节:实践应用,解决问题
这一环节是对我们所探究结果的运用,即运用圆周长的计算公式来解决生活中的实际问题。
1、解决刚上课时提出的问题:车轮向前滚动一周,行驶了多长的路程?做到首尾呼应。
2、设计了三道有梯度的练习:①d=5米,C=?②r=5厘米C=?③C=6.28米d=?3、明辨是非,下面的说法对吗?
①π=3.14()
②大圆的圆周率小于小圆的圆周率。()
③圆的周长是它的半径的2π倍。()
意图:设计有关圆周率的判断,是帮助学生巩固新概念,加深对圆周率的理解。
第四个环节:畅谈收获,课外延伸作业:
赤道就像地球的“腰带”,它的长度大约是4万千米。你知道地球的半径大约是多少吗?
设计意图:在课堂即将结束时,我设置了与前面相呼应的求赤道周长的课外的拓展。这样的设置,把课堂的教学延伸到课外,提高学生的学习能力。
你有什么收获?(引导学生总结所学内容,学习方法,获得情感态度等体验。)
七、板书设计:
圆的周长
化曲为直圆的周长÷直径=圆周率
C÷d=π3.14×20=62.8(英寸)
C=πd答:车轮向前滚动一周,行驶了62.8英寸。
C=2πr
圆的周长教案5
教学目标:
1、在观察,测量,讨论等活动中经历探索圆的周长公式的过程。
2、理解并掌握圆的周长公式,会用字母表示,能运用周长公式进行计算。
3、体验数学与日常生活的密切联系,了解圆周率的发展史,激发民族自豪感和探索精神。
教学难点:
理解圆周率的意义。
教具准备:
根据教学任务和学生学习的需要,我所准备的教具有直尺、圆形硬纸板、绳子、剪刀、圆周长演示器。多媒体课件。
学具准备:
学生准备的学具有直尺、圆形硬纸板(大中小各一个)、绳子、剪刀。
教学过程:
一、创设情境
1、出示情境图,让学生观察情境图,了解图中的事情,提出谁的车轮转动一周走的远,为什么?
师:那车轮转动一周,谁的车走得远呢?为什么?
学生自由回答
3、揭示车轮周长概念。
4、讨论:车轮的周长和什么有关,有什么关系?
师引入并板书课题:圆的周长。下面我们继续研究,看看圆的周长和直径还有什么关系?
二、自主探索
(一)测量硬币
1、让学生用准备好的材料测量1元硬币和直径和周长。
师:同桌合作,利用手中的材料测量出1元硬币的周长和直径。
学生活动,教师巡视并参与。
2、交流测量结果和方法,注意测量的过程要交流清楚。
3、计算并观察测量的数据,推测硬币的周长与直径之间有什么关系。
我估的硬币的周长大约是直径的3倍。
大胆推算硬币周长与直径的关系。
(二)测量圆片
1、提出做一做的要求,让学生用教师准备好的圆片测量并计算。
2、交流各组测量和计算结果,然后让学生说一说发现了什么?
三个圆的周长都是它直径的三倍多一些
(三)总结圆的周长公式
1、教师介绍圆周率的发展历程,然后交流感受和启发,进行思想教育。
师:看来,任何圆的周长都是它直径的三倍多一些,其实这个倍数是固定不变的数,我们把它叫作圆周率。板书:圆的周长÷直径=圆周率。
师:由于我们在测量时有误差,所以得不到一个固定值。
师:圆周率可用字母π来表示。板书:π
教师范读,学生齐读,并在桌子上试着写一写。
师:我们今天课上研究的圆周率,早在几千年前,我们古人就开始研究了。
板书:π3.14
2、引导学生根据周长÷直径=圆周率,推导出圆的周长公式并用字母表示。
师:根据圆的周长÷直径=圆周率,如何求圆的周长呢?
生:直径×圆周率=圆的周长
师:如果周长用字母“c”表示,直径用“d”表示,谁来总结求圆周长的公式?
生:c=πd师:板书
师:那如果把直径d换成半径r呢?
生:c=2πr师板书
三、简单应用
让学生试着用公式求圆的周长
课件出示(书中例题和镜子实物图。目的:是让学生能够通过看着实物镜子,去理解金属条的长就是镜子的周长。)
学生自己完成,指名板演
集体订正。
四、交流收获
五、布置作业:83页第一题
板书设计:
圆的周长
圆的周长÷直径=圆周率(π≈3.14)
C=πd或c=2πr
3.14×40=125.6(厘米)
答:这根金属条的长至少是125.6厘米。
圆的周长教案6
教学目标:
1、在观察、操作等实践活动中,让学生体会到周长的含义。
2、会测量和计算一些简单的平面图形的周长。
3、在各项活动中发展学生的空间观念和良好的数学情感。
4、培养学生的合作交往及动手能力。
教学重点:体会周长的含义,会测量或计算平面图形的周长。
教学难点:理解周长的含义。教学过程:
一、创设情景
教师讲述:小明和萧军在操场跑步,小明跑的是内圈,萧军跑的是外圈,他们都跑了一圈。他们跑的一圈叫什么?这就是我们今天要学的内容,认识周长。
二、新知探索
1、感受周长:你能用手去摸一摸自己课桌面的周长、三角板和桌上的文具盒的周长长吗?
(学生先小组内活动,然后请小组代表进行演示)
2、测量周长
教师引导学生讨论:我们怎样才能比较课桌和三角板的周长的长短呢?(学生讨论、回答)
学生小组合作,动手测量课桌的三角板的周长,并汇报本组测量周长的方法。
教师在黑板上画一跑道,指明让学生到前面量一量,看一能不能量准。学生量过后。
教师总结:像跑道图上内圈和外圈这样形状不规则的图形,我们在测量他们的周长时直接用直尺不方便,可以先用线围一围,再测量线的长度就可以了。
三、实践巩固
1、试一试
先请学生用笔描出两个图形的周长,再请学生独立测量或计算两个图形的周长是多少。集体订正时请学生说一说自己是用什么方法求得周长的。
教师:像这样的图形,可以用线围一围再测量也可以直接测量出每条边的长,再加起来。
2、P45,练一练第1题
学生独立做题,同组的学生互相检查。
3、P45,练一练第2题
学生独立计算,集体订正时分别请学生说一说自己的计算方法。
引导学生小组交流,比较不同的计算方法那一种自己更喜欢?为什么?
4、P45,练一练第3题
学生独立观察、比较,看一看他们的周长是不是一样的。在动手量一量。
5、教师谈话:老师准备星期天去买裤子,可是我不知道自己的腰围是多少,你们可以想办法,现在就帮我量出来吗?
学生交流测量方法,指名学生上台测量。
四、课堂小结
今天我们学习了新的知识,你会测量周长吗?你认为自己今天表现的如何?
教学反思
教师要把学生当做课堂的主人,把教学视为教师与学生之间的交流与对话,数学教师应该更注重对学生的引导和开展课堂讨论。数学课堂组织形式本身也是灵活多样,不拘一格的。教师和学生围坐在一起共同参与讨论是很平常的,师生之间的交流与对话也应该是无拘无束的。教师要为学生营造一个自主的心理氛围,而不是把自己当成一个居高临下的权威者。只有这样课堂气氛才会轻松活跃,学生的参与意识也会很强。
圆的周长教案7
教学目标:
1、通过教学使学生学会根据圆的周长求圆的直径、半径。
2、培养学生逻辑推理能力。
3、初步掌握变换和转化的方法。
教学重点:
求圆的直径和半径。
教学难点:
灵活运用公式求圆的直径和半径。
教学时间:
一课时
教学过程:
一、复习。
1、口答。
4π2π5π10π8π
2、求出下面各圆的周长。
《圆的周长(2)》教学设计《圆的周长(2)》教学设计《圆的周长(2)》教学设计C=πdc=2πr
《圆的周长(2)》教学设计3.14×22×3.14×4
=6.28(厘米)=8×3.14
=25.12(厘米)
二、新课。
1、提出研究的问题。
(1)你知道表示什么吗?
(2)下面公式的每个字母各表示什么?这两个公式又表示什么?
C=πdC=2πr
(3)根据上两个公式,你能知道:
直径=周长÷圆周率半径=周长÷(圆周率×2)
2、学习练习十四第2题。
(1)小红量得一个古代建筑中的大红圆柱的周长是3.768米,这个圆柱的.直径是多少米?(得数保留一位小数)
已知:c=3.77求:d=?
(2)做一做。用一根1.2米长的铁条弯成一个圆形铁环,它的半径是多少?(得数保留两位小数)
三、巩固练习。
1、饭店的大厅挂着一只大钟,这座钟的分针的尖端转动一周所走的路程是125.6厘米,它的分针长多少厘米?
《圆的周长(2)》教学设计
2、求下面半圆的周长,选择正确的算式。
⑴3.14×8
⑵3.14×8×2
⑶3.14×8÷2+8
3、一只挂钟分针长20c,经过30分后,这根分针的尖端所走的路程是多少厘米?经过45分钟呢?
想:钟面一圈是60分钟,走了30分,就是走了整个钟面的《圆的周长(2)》教学设计,也就是走了整个圆的《圆的周长(2)》教学设计。而钟面一圈的周长是多少?20×2×3.14=125.6(厘米)
45分钟走了多少厘米?125.6×《圆的周长(2)》教学设计=94.2(厘米)
4、P66第10题思考题。下图的周长是多少厘米?你是怎样计算的?
作业。
P65-66第3、6、7、9题
圆的周长教案8
教学目标
1.使学生认识圆的周长,初步理解圆周率的意义。
2.通过对圆周率值的探求,培养学生科学的和实事求是的探索精神,及概括能力和逻辑思维能力。
3.通过介绍我国古代数学家对圆周率研究的贡献,对学生进行爱国主义和辩证唯物主义观点的启蒙教育、增强民族自豪感。
教学重点和难点
推导圆周长的计算公式。理解圆周率的意义。
教学过程设计
(一)复习准备
上节课我们认识了圆,现在大家都说说,你们都知道关于圆的哪些知识?
(二)学习新课
我们这节课就来研究圆的周长。(板书:圆的周长)
我想问问同学,你们都带了哪些圆形实物?
两人互相指指圆的周长在哪儿?
谁愿意到前面来指一指老师手里这个圆的周长。
谁跟他指得不一佯?为什么这样指不行?
老师这有一面镜子,我要给这面镜子镶一条不锈钢边框,怎么才能知道这个边框长多少厘米呢?
老师这还有一个杯子,用它喝水有时烫手,我想编一个杯子套,怎么才能知道套口应该编多大?
哪个小组愿意帮助解决这个问题?我们每个组都带了一些圆形实物,我们要通过小组合作测出圆的周长,并填写实验报告。
请你在实验报告上填出你测量的实物名称,周长是多少,直径是多少。
(学生分小组测量手中圆形实物,并填写在实验报告上。能测量多少数据就测量多少数据。)
请小组代表汇报本组的实验过程和实验结果。
同学们想了那么多种方法,看来你们真了不起。我们归纳起来,同学们都是用缠绕、滚动的方法把曲线变直的。(板书:绕、滚)
(师出示黑板上画的圆)谁能用这两种方法来测量这个圆的周长。
看来光靠绕、滚这种实践的方法来测量圆的周长是不行的,我们必须研究一种求圆周长的方法。
想一想,以前我们学过哪些几何图形的周长?
长方形的周长和谁有关系?有什么关系?
正方形的周长和谁有关系?有什么关系?
圆的周长和谁有关系呢?举个例子说明,是不是这样呢?请看屏幕。
(用电脑演示三个滚动的圆,看出圆越大滚动的轨迹越长,圆越小滚动的轨迹越短。)
我们得出了圆的周长和直径有关系。
(板书:圆的周长直径)
这是我们大家一起发现的。科学家往往发现问题就要去研究,我们同学长大想不想当科学家?今天我们就先学着科学家来研究一个问题:用我们测量的数据,通过计算分析,来研究圆的周长到底和直径有什么关系?你发现了什么规律?
(学生分小组讨论。)
通过同学们实验研究,我们得出圆的周长总是直径的3倍多一些。(板书:3倍多一些)
是不是这样呢?我们来验证一下。
(电脑演示:圆的周长是直径的3倍多一些。)
这是一个固定的倍数关系,我们叫它圆周率。(板书:圆周率)
谁能说说圆周率是怎么得来的?
请同学们看书上是怎么说的?
早在20xx年前,我国古代数学经典《周髀算经》就指出:圆经一而周三,(用投影打出这句话。)当时,是很了不起的成就,至今人们常用它来估算圆的周长。刚才,老师就是用这种方法来估算同学们算得是否准确的。谁知道世界上最早将圆周率准确到7位小数的是谁?(学生口答)他是我国伟大的数学家和天文学家祖冲之。
(出现祖冲之的画像,同时放配乐录音,介绍祖冲之。)
约1500年前,我国伟大的数学家和天文学家祖冲之就已精密地计算出圆周率的值在3.1415926和3.1415927之间,他是世界上第一个把圆周率的值精确到7位小数的人,比欧洲的数学家要早1000年左右。现在世界上最大的环形山,就是以祖冲之的名字命名的。
我们确实应该为前人的聪明、智慧感到自豪和骄傲。后来瑞士的数学家欧拉用希腊字母代表圆周率。(板书:)
圆周率是一个无限不循环小数。在计算时,如果用这个无限不循环小数参加计算是不方便的,故通常将取两位小数。(板书:3.14)
既然是个固定的值了,只要知道什么就能求圆的`周长?(直径。)
现在我们能不能计算黑板上这个圆的周长?
什么条件不知道?(直径。)
谁来测直径,用分米作单位。(板书:分米)
如果直径是2分米,半径就是几分米?
用半径能不能求圆周长?
现在我们试着用直径或半径来求黑板上圆的周长。
谁用直径求出圆的周长?
(板书:3.142=6.28(分米))
为什么这样列式?
(板书:圆的周长=直径圆周率)
如果用C表示圆的周长,d表示直径,表示圆周率,字母公式怎么表示?
(板书:C=d)
谁能用半径求圆的周长?为什么这样做?
如果用字母r表示半径,字母公式怎么表示?
(板书:C=2r)
(三)巩固反馈
1.求出下面各圆的周长。(单位:厘米)
2.判断,你认为正确画,错误画。
(1)一个圆的周长总是它的直径的倍。()
(2)圆的周长是6.28厘米,它的半径是2厘米。()
(3)圆周长的一半与半个圆的周长相等。()
3.选择:你认为哪个答案正确就举几号卡片。
(1)车轮滚动一周,所行路程是求车轮的[]
①半径
②直径
③周长
(2)圆形水池的直径是4米,绕池一周长[]
①25.12米
②12.56米
③12.56平方米
(3)A圆的直径是6厘米,B圆的直径是2分米,圆周率[]
①A圆大
②B圆大
③一样大
4.甲乙两人分别沿①、②两条路线从一端走到另一端,谁走的路线长?
(四)总结全课
这节课你学会了什么?(引导学生总结本课所学的知识。)
课堂教学设计说明
本节课通过引导学生对圆周率的探求,推导出圆周长的计算公式。第一步先通过测量实物中圆的周长,研究测量圆周长的方法是通过绕、滚的方法来测量。接着出现画在小黑板上的圆,当学生发现测这个圆的周长不能用绕、滚的方法来测量,必须研究一种求圆周长的方法。第二步,推导计算圆周长的公式。先带领学生回忆:我们以前学过哪些几何图形周长的计算?长方形和正方形的周长和谁有关系?引导学生发现圆周长和谁有关系。第三步,研究圆的周长和直径有什么关系,理解圆周率的意义,推导出圆周长的计算公式。通过对圆周率值的探求,培养学生科学的、实事求是的探索精神和概括能力及逻辑思维能力。
圆的周长教案9
教学内容:苏教版小学数学第十册第98—99页。
教学目标:1、理解圆周率的意义,掌握圆的周长的计算公式。
2、通过测量、计算、猜测圆的周长和直径的关系,理解和掌握圆的周长的计算公式,并能正确地计算圆的周长。
3、体验数学与日常生活的密切联系,了解圆周率的发展史,激发民族自豪感和探索精神。
教学重点:理解和掌握求圆的周长的计算公式,能计算圆的周长。
教学难点:动手操作,探索圆的周长与直径的关系。
教学具准备:教师准备多媒体课件、学生实验报告表。学生准备直尺、直角三角尺两把、一角、五角、一元硬币名一枚、绳子。
教学过程:
一、联系生活,激活内需
同学们,为了倡导低碳生活、共建绿色家园,重庆一支自行车队伍头戴钢盔,身穿印有“环保、低碳”字样的文化衫,人手一辆自行车,从奥体中心出发,驶向主城各个方向,庞大的阵容吸引了不少市民关注。(课件出示图片)但是,他们选择的自行车却是不一样的,请同学们看两张图片。(课件出示自行车的两张图片及议一议的内容)
议一议:(1)车轮转动一周,谁的车走得远呢?为什么?什么是车轮的周长?
(2)车轮的周长和什么有关系?圆的周长与什么有关系?圆的周长与直径有怎样的关系呢?
揭示课题:圆的周长
【评析:从现代生活理念出发,也是从学生已有的知识经验出发,感知车轮转动一周的远近与车轮的周长有关,车轮周长的大小就是圆的周长的大小,圆的周长与直径的长短有关。一方面让学生受到了环保教育,另一方面也让学生自我发现研究圆的周长要从研究周长与直径的关系入手,也产生了进一步探究的必要性。】
二、实验操作,探究新知
1、在情境中内化概念
同学们已经知道圆的周长指的那部分,那你们拿出自己准备的硬币,用手摸一摸这个圆的周长,并且指给你的同桌看一看。那你能不能用自己的话说一说什么是圆的周长?
师生共同小结:围成圆的曲线的长是圆的周长。
2、测量圆的周长
(1)既然圆的周长是曲线那能不能用直尺直接测量呢?怎么测量呢?(让学生独立思考10秒左右)
(2)四人一小组讨论、交流测量方法。并把结果记录下来。(滚动法、绕绳法)
(3)小组汇报:哪个组愿意第一个到前面来把你们的方法介绍给大家?(结合学生的方法配以课件演示)
课件演示的时候让学生观察两种测量方法的相同点是什么?(都是把圆周长这条曲线转化成了线段,然后通过测量这条线段的长度就得到了圆的周长)
(板书:化曲为直)这种转化的方法在数学学习中很常见,同学们利用的很好。
3、探索规律
圆的周长与直径到底有怎样的关系呢?利用你手中的硬币及工具来测量一下圆的周长与直径。下面请同学们选用自己喜欢的方式以小组为单位进行测量,记录测量数据,并通过计算寻找周长与直径的关系,看看你们组发现了什么。把结论填在表的下面。(课件出示实验报告表,并让每组拿出课前发的表格。)
物品名称
周长
直径
周长与直径的关系(计算)
一角硬币
五角硬币
一元硬币
我们发现的规律是:
小组合作完成,全班交流实验结论。预设:圆的周长是直径的3倍多一些。
4、老师操作,即课件演示测量圆的直径和周长的过程。
师:老师也测量了圆的周长与直径,你们想看一看吗?演示课件。
总结:圆的周长总是直径的3倍多一些。
5、认识圆周率
(1)实验证明:圆的周长确实是直径的三倍多一点,我们把它叫做圆周率,很早以前我国的数学家就发现了这个规律,下面请同学们听有关圆周率的故事。请同学们在听的过程中把你认为重要的记在脑子里。
(2)听了这个故事,你有哪些感受?师:是啊,中国人真了不起!从古到今,一直如此,我希望同学们也能成为一个了不起的人。
(3)师说明:刚才同学们算到的结果都不是3.14,那是因为做实验时的误差所致。“圆的周长总是直径的三倍多一些”写成关系式,(板书:圆的周长÷直径=圆周率)圆周率用字母π表示。
“圆的周长总是直径的三倍多一些”还可以说成“圆的周长总是直径的π倍。
根据这个结论,你能说出计算圆周长的公式吗?如果用字母C表示圆的周长,d表示直径,它的字母公式你会表示吗?(板书:圆的周长=直径×圆周率)能用字母表示吗?(板书:C=πd)还可以知道圆的什么条件求周长?(半径)知道半径怎样求呢?字母公式怎样表示?(C=2πr)
【评析:以小组学习的形式,放手让学生去探求圆的周长,目的是体现让学生进行自主探索的教学思想,同时也培养学生的合作意识与能力。这里提供三种不同的圆让学生求周长,向学生渗透“化曲为直”的数学思想及方法。通过介绍圆周率,在头脑中完善对圆的周长计算方法的认知,促进学生的自我建构,激发一定的民族自豪感和探索精神。】
三、巩固应用,内化知识
1、独立完成。
(1)“试一试”。
计算例4中三个自行车车轮的周长大约各是多少厘米。
(2)“练一练”。
有一种汽车车轮的半径是0.3米。它在路面上前进一周,前进了多少米?
3、小组合作完成。
(1)你知道不知疲倦的小秒针顶端,在一个小时的时间内所走过的路程吗?要解决这个问题你想得到什么样的数据?
(2)(出示图片)圆形花坛的直径是20米,小自行车车轮的直径是50厘米,绕花坛一周车轮大约滚动多少周?
【评析:通过简单的图形计算让学生理解圆周长的计算公式的应用,并强调解题的书写过程,体会到学以致用。实例计算可以让学生更好的理解数学来源于生活,又能解决实际的生活问题的作用,又可为课后实践题打下很好的伏笔。】
四、回顾反思,评价小结
通过这节课的学习,评价一下自己学得怎样?你有什么收获?这些知识是怎样学到的?
师:同学们,生活中的数学问题还有很多,希望你们善于发现,善于探索,善于总结,相信你们一定会拥有更多的智慧,收回更多的快乐!
五、课后拓展,走进生活
小组合作完成,应用这节课学到的知识,想办法测量一下,从学校大门口到影剧院门口的距离大约是多少米。
【评析:让学生真正能够达到学习上的学以致用,并且培养学生的小组合作意识和学生的动手能力。】
板书设计:
圆的周长
圆的周长是直径的3倍多一些
圆的周长=直径×圆周率
C=πd
C=2πr
圆的周长教案10
教学设想:
利用正方形的周长与边长的知识,引导学生进行猜想和讨论,使学生对后续的实际探究过程有明确的目的性。课件中两只小兔子进行赛跑比赛是生活问题,却是比较圆的周长和正方形周长的数学问题,创设教学情境,激发学生参与的兴趣,为后继学习和深入探究埋下了伏笔。利用动画的演示过程,很好的展示了圆周长的概念,并通过结合实际动手操作和利用正方形周长概念进行迁移,使学生较为牢固地掌握了圆周长的概念,也充分体现了学生在课堂学习过程中的主体地位。
教学内容:
小学数学义务教育教材十一册第137~138页“圆的周长”
教学目标:
1.使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确地进行简单计算;
2.培养学生的观察、比较、分析、综合及动手操作能力;
3.通过学习圆周率的历史发展,对学生进行爱国主义教育。
教学重点:
推导总结出圆周长的计算公式。
教学难点:
深入理解圆周率的意义。
教学准备:
电脑课件,圆形实物以及直尺、绸带,测量结果记录表。
教学过程:
一、创设情境,引起猜想
(一)教师播放课件激发学生兴趣
黑兔和白兔比赛跑步,黑兔沿着正方形路线跑,白兔沿着圆形路线跑,结果白兔获胜。黑兔看到白兔得了第一名,心里很不服气,它说这样的比赛不公平。同学们,你认为这样的比赛公平吗?
(二)认识圆的周
1.回忆正方形周长:黑兔跑的路程实际上就是正方形的什么?什么是正方形的周长?
2.认识圆的周长:那白兔所跑的路程呢?圆的周长又指的是什么意思?
师:围成圆的一周的曲线长度叫做圆的周长。(出示课题圆的周长)
3.小组合作,测出自己准备的三个圆形纸片的周长,并记录。
4.反馈:你是用什么方法测出来的?
生1:“滚动”——把实物圆沿直尺滚动一周;
生2:“缠绕”——用绸带缠绕实物圆一周并打开;
5.小结各种测量方法:(板书)化曲为直
6.创设冲突,体会测量的局限性
教师甩小球:你能用刚才的方法测出这个圆吗?刚才大屏幕上白兔跑的路线也是一个圆,这个圆的周长还能进行实际测量吗?(生:不行)看来,刚才的方法有局限性,今天我们来探讨一种能很快知道所有圆的周长方
(三)合理猜想,强化主体
1.请一生用绳子拴粉笔在黑板上画出两个大小不同的圆,四人小组讨论,猜猜圆的周长跟什么有关?
生:我猜圆的周长跟直径有关。
2.师课件演示:直径越大,周长越长;直径越小,周长越小。
3.请同学们想一想,正方形的周长和它的边长有关系,而且总是边长的4倍,所以正方形的周长=边长×4。正方形的周长总是边长的4倍,再看这幅图,猜猜看,圆的周长应该是直径的几倍?
(生1:我猜3倍。生2:我猜3.5倍生3:……)
4.我们能不能像求正方形周长那样找到求圆周长的一般方法呢?
二、实际动手,发现规律
(一)分组合作
1.明确要求:将前面测量的结果填入表格,并计算圆周长除以直径的结果,填入表格里。
2.反馈数据
生1:我们小组算出圆的周长大约是直径的3.4倍。
生2:我们小组算出圆的周长大约是直径的3.2倍。
生3:我们小组算出圆的周长大约是直径的4倍。
师:课件演示:圆的周长总是直径的三倍多一些。
(二)介绍祖冲之
这个倍数通常被人们叫做圆周率,用希腊字母π表示。
板书:圆周率=圆的周长÷直径
早在1500多年前,我国古代就有一位伟大的数学家,曾对这个倍数进行过精密的测算,他最早发现这个倍数确实是固定不变的,知道他是谁吗?
这个倍数究竟是多少呢?我们来看一段资料。
(投影出示:祖冲之是我国南北朝时期,河北省涞源县人.祖冲之在前人成就的基础上,用圆内接正多边形的方法,把圆的周长分成若干份。分的份数越多,正方形的周长就越接近圆的周长。最终通过计算正多边形的周长来计算圆周率。经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间,精确到小数点后第七位.不但在当时是最精密的圆周率,而且保持世界记录九百多年……)
4.理解误差
看完这段资料,同学们都在为我们国家有这样一位伟大的数学家而感到骄傲,可不知同学们想过没有,为什么我们的.测算结果都不够精确呢?
(三)总结圆周长的计算公式
1.如果知道圆的直径,你能计算圆的周长吗
板书:圆的周长=直径×圆周率
C=πd
2.如果知道圆的半径,又该怎样计算圆的周长呢?
板书:C=2πr
3.应用
(1)甩动小圆球,告知绳长3分米请学生选用公式计算此圆的周长。
生:我选C=2πr,2×3.14×3=18.84分米,此圆的周长是18.84分米。
(2)课题外的圆的直径是20厘米,用哪个公式计算?
生:我用C=πd计算,3.14×20=62.8厘米,此圆的周长是62.8厘米
(3)解答开始的问题:现在你能准确的判断出黑兔和白兔谁跑的路程长了吗?
三、巩固练习,形成能力
1.判断
(1)圆的周长是直径的π倍。
(2)大圆的圆周率大于小圆的圆周率。
(3)π=3.14
2.出示例1,学生自己计算。
3.如果黑兔沿着大圆跑,白兔沿着两个小圆绕8字跑,谁跑的路程近?
四、课内小结,扎实掌握
通过今天的学习,你有什么收获?
五、课外引申,拓展思维
一个茶杯口的直径你有什么方法知道?
圆的周长教案11
教学内容:
教学目标:
1、经历探究圆的周长与直径的商为定值的过程,理解圆周率。体会化曲为直的转化思想,增强合作意识,体验成就感。
2、掌握圆的周长的计算方法,能正确计算圆的周长,并解决简单的实际问题,增强应用意识。
3、感受圆周率的探索历史,增强爱国主义情感和探究数学的欲望。
教学重点:理解圆周率,能计算圆的周长。
教学难点:探索并理解圆的周长与直径的商为定值。
教学准备:大小不同的圆形纸板、计算器、多媒体课件、20厘米长的绳子、直尺、硬币、画有圆而且标出直径的正方形。
教学策略:自主探索、讨论交流、点拨与练习
教学程序:
一、激活目标
出示主题图花坛,花坛的周长指什么?出示自行车,车轮的周长指什么?出示画有圆而且标出直径的正方形,这个圆的周长指什么?你能想出几种办法测量圆的`周长?
二、活动建构
1、测量大小不同的四个圆的周长与直径,填表并计算。探究与发现:周长与直径的关系。(借助计算器)
2、介绍圆周率的由来。
任意一个圆的周长与它的直径的商都是一个固定的数,我们把它叫做圆周率,用字母π来表示。圆周率=周长÷直径,即π=c÷d。“π”的由来:π是第十六个希腊字母,是希腊文圆周率的第一个字母,大数学家欧拉在一七三六年开始,在书信和论文中都用π来代表圆周率。
组织学生阅读资料,谈感受。
3、推导出:c=πd或c=2πr
4、计算花坛的周长,解决相关问题。
圆形花坛的直径是20米,它的周长是多少米?自行车车轮的直径是50厘米,绕花坛一周车轮大约转动多少周?
三、解释应用
一种铲车的前轮半径0.4米,后轮直径1.6米。行驶时,后轮转一周,前轮转几周?
四、反馈测评
1、一个圆形喷水池的半径是5米,绕着它走一周,要走多少米?
15厘米
A
B
2、小蚂蚁从A点沿着这条曲线爬到B点,大约要爬多远的距离?
3、公园内有一个圆形人工湖,绕湖一周要走1570米,湖中心有一个小岛,从湖边到小岛架一座桥,桥长大约多少米?
五、课堂小结
我的最大收获是什么?我有什么遗憾?我有什么疑问?
希望同学们在探索数学奥秘的过程中体验快乐,经历成长,创造成功!同学们,再见。
圆的周长教案12
一、教学内容:
课程标准实验教科书数学(人教版)三年级上册第41页内容。
二、教学目标:
1、通过指一指、说一说等活动使学生理解、掌握周长的概念。
2、通过实践、操作探究周长测量策略,培养学生动手操作能力和概括能力。
3、培养学生合作探究能力。
三、教学重、难点:
学生建立周长的概念,引导学生探究周长的测量策略。
四、教学用具准备:
多媒体课件、直尺、各种图形、线绳等
五、教学过程:
一、猜图游戏,导入新课
谈话:小朋友们,今天老师给你们请来了一位小画家,他画画可有点特别!我们一起去欣赏欣赏他的作品吧!
〈多媒体演示:小画笔勾勒出乒乓球拍的`轮廓〉
师:猜猜,他画的是什么?
生:乒乓球拍
〈分别演示:手机、国旗的轮廓〉
请学生发挥想象去猜测。
小结:刚才小画家沿着这些物体所画的长度就是我们今天要认识的新朋友——周长(板书课题)
二、实践中理解周长
1、理解封闭图形
师:谁听说过“周长”,能给大家介绍一下?
生:……
师:我们看看课本41页是怎样介绍的。
齐读:封闭图形一周的长度叫做它的周长。
师质疑:这里好象有个词不常见?
生:封闭。
师:谁能解释?
生:四周都不漏缝的
师:那么下面这些图形哪些是封闭图形呢?
〈多媒体演示:〉
师:这些图形中那些是封闭图形?为什么?
生:……
小结:像这样首尾相接起来的就是封闭图形,
封闭图形一周的长度叫周长。
〈多媒体同时演示封闭图形首尾相接的过程〉
2、指一指,从实物中找周长
(1)师生合作
出示钟
师:谁能指一指钟面的周长?
生指
师:你是怎么指的给大家说一说
生:我是从这里开始绕一圈再回到这里。
指叶片、粉笔盒、数学课本表面的周长。
引导理解周长在面上
(2)生生合作
你能指出我们身边的物体表面的周长吗?
师:下面请和你小组同学指一指、说一说自己找到的周长。
指的时候要注意首尾相接,说的时候要说清是哪个面上的周长。
学生活动,汇报
师:我们身边能指出很多周长,例如:操场上也有。
三、探究中体验测量方法
1、创情境
师:这段时间,同学们都在操场上忙着干什么呢?
生:做操……
师:小动物们也和大家一样忙着锻炼呢?
〈多媒体演示:小动物们绕图形一周跑一圈〉
师:怎么同时到达终点,那么他们跑得一样快吧?
生:……
师:我们要看谁跑的路最长,也就要知道哪种图形周长最长,我们可以测量一下,可这些图形我们要怎样测量呢?
生:可以用线、用尺。
师:那下面我们就来测量一下图形的周长评出冠军。
2、量周长
师提出合作要求:每个小组长的信封里有这些图形,每人选一种图形,老师为你们准备了绳子,你们可以选择喜欢的方法测量。量的过程中有不满整厘米的可以选择接近的整厘米,最后组长把每个同学的测量结果记录在表格中。
学生活动
汇报结果
对照测量结果,承认误差。
师:谁的周长最长?
生:长方形
那么青蛙就成为了这次比赛的冠军!
四、全课总结
说说这一节课你学到了什么?
课后反思:在课堂教学中,学生是认识的主体,发现的主体,实践的主体。教育家波利亚指出:学习任何新知的最佳途径是由学生自己去发现,因为这种发现理解最深,也最容易掌握内在规律和联系。因此教师在教学中应当充分尊重学生的主体地位,积极为学生创设主动学习的机会,提供尝试探索的空间,使学生乐于、善于自主学习,能主动从不同方面,不同角度思考问题,寻求解决途径。同时还要培养学生的合作意识,经常进行合作学习训练,使不同的想法,不同的观点激烈交锋,在磨擦碰撞中闪耀出智慧的火花,实现知识的学习、互补和再创造。
圆的周长教案13
学生已经有了对周长的认识,只是研究圆的周长需要探索圆的周长与直径的关系,那么,对于圆的周长与直径的这个倍数关系,学生通过测量、计算是能发现的,然后再根据这一倍数关系推导出周长的计算方法。教学时,关键是引导学生能发现圆的周长与直径之间的倍数关系。
1.理解圆周率的意义,推导出圆周长的计算公式,并能正确的进行简单的计算。
2.培养学生的观察、比较、分析、综合及动手操作能力。
3.领会事物之间是联系和发展的辩证唯物主义观念以及透过现象看本质的辨证思维方法。
4.结合圆周率的学习,对学生进行爱国主义教育。
推导并总结出圆周长的计算公式。
深入理解圆周率的意义。
备注:
活动一:创设情境,引起猜想:认识圆的周长
(一)激发兴趣
小黄狗和小灰狗比赛跑,小黄狗沿着正方形路线跑,小灰狗沿着圆形路线跑,结果小灰狗获胜。小黄狗看到小灰得了第一名,心里很不服气它说这样的比赛不公平。同学们,你认为这样的比赛公平吗?
(二)认识圆的周长
1.回忆正方形周长:
小黄狗跑的路程实际上就是正方形的什么?什么是正方形的周长?
2.认识圆的周长:
那小灰狗所跑的路程呢?圆的周长又指的是什么意思?
每个同学的桌上都有一元硬币、茶叶筒、易拉罐等物品,从这些物体
中找出一个圆形来,互相指一指这些圆的周长。
(三)讨论正方形周长与其边长的关系
1.我们要想对这两个路程的长度进行比较,实际上需要知道什么?
2.怎样才能知道这个正方形的周长?说说你是怎么想的?
3.那也就是说,正方形的周长和它的哪部分有关系?正方形的周长总
是边长的几倍?
(四)讨论圆周长的测量方法
1.讨论方法:刚才我们已经解决了正方形周长的问题,而圆的周长呢?
如果我们用直尺直接测量圆的周长,你觉得可行吗?请同学们结合我们手里的圆想一想,有没有办法来测量它们的周长?
2.反馈:(基本情况)
(1)滚动–把实物圆沿直尺滚动一周;
(2)缠绕–用绸带缠绕实物圆一周并打开;
(3)折叠–把圆形纸片对折几次,再进行测量和计算;
(4)初步明确运用各种方法进行测量时应该注意的问题。
3.小结各种测量方法:(板书)转化
曲直
4.创设冲突,体会测量的局限性
刚才大屏幕上小灰狗跑的路线也是一个圆,这个圆的周长还能进行实际测量吗?那怎么办呢?
5.明确课题:
今天这堂课我们就一起来研究圆周长的计算方法。(板书课题)
(五)合理猜想,强化主体:
1.请同学们想一想,正方形的周长和它的边长有关系,而且总是边长的4倍,所以正方形的周长=边长4。我们能不能像求正方形周长那样找到求圆周长的一般方法呢?小组讨论并反馈。
2.正方形的周长与它的边长有关,你认为圆的周长与它的什么有关?
向大家说一说你是怎么想的。
3.正方形的周长总是边长的4倍,再看这幅图,
猜猜看,圆的周长应该是直径的倍?
(正方形的边长和圆的直径相等,直接观察可发现,圆周长
小于直径的四倍,因为圆形套在正方形里;而且由于两点间
线段最短,所以半圆周长大于直径,即圆周长大于直径的两倍)
4.小结并继续设疑:
通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢?你还能想出办法来找到这个准确的倍数吗?
活动二:动手操作,探索圆的周长与直径的关系。
圆的周长教案14
教材分析:
圆的周长是在学生学习了周长的一般概念以及长方形、正方形周长计算的基础上进一步来学习的。从生活实际入手,利用学生掌握的有关圆的知识,通过实验得出结论。
学情分析:
本单元第一部分通过对圆的研究,使学生初步认识了研究曲线图形的基本方法,也渗透了曲线图形与直线图形的内在联系。前期的学习和认识都为学生学习研究“圆的周长”奠定了良好的知识、方法基础和铺垫。“圆的周长”教学部分,教材在编排上加强了启发性和探索性,注重让学生动手操作,使学生在实践活动中通过交流、思考来探究,逐步导出和掌握计算公式。教学的重点是让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径、半径的关系,验证猜测等过程理解并掌握圆的周长计算方法。
教学目标:
知识与技能:知道圆的周长和圆周率的含义,掌握圆周率的近似值。理解掌握圆周长的计算公式,并能应用公式解决简单的实际问题。
过程与方法:通过对圆周长的测量和计算公式的探讨,培养学生的观察、猜测、比较、分析、综合和主动研究、探索解决问题方法的能力。
情感态度与价值观:初步学会透过现象看本质的辩证思想方法,渗透“化曲为直”的数学思想,培养爱国主义情感,激发民族自豪感。
教学过程:
(一)创设情景,导入课题。
1、创设情境。
(1)、教师出示熊大和光头强跑步比赛,请同学判断比赛的公平性并说明原因。
师:学习新知识之前,老师想邀请大家一起来看一场比赛,每个同学都是裁判,有没有兴趣?比赛开始!
(2)、师:看到这儿,你对这个比赛有什么看法?
学生判断比赛的公平性并说明原因。
学生发表看法,可能的回答如下
生1:不公平,因为光头强沿着正方形跑,熊大沿着圆形跑。
生2:不公平,因为正方形的周长比圆形的周长要长。
(3)、教师小结,引出本节课题。
师:看来,这个比赛与跑道的周长有关系。上节课同学们已经认识了圆,这节课我们就一起来研究圆的周长。(板书课题)
设计意图:通过熊大和光头强比赛的情景创设,一方面是激发学生的学习兴趣和参与研究的主动性,体会数学与生活的密切联系;另一方面通过两种图形路程的不同,引出新课。
2、认识圆的周长。
(1)、师:什么是圆的周长?怎样求圆的周长?
(2)、教师出示圆形纸片。师:谁能上来指一指,哪个长度是这个圆形纸片的周长。
(3)、教师在大屏幕上用flash动画出示圆环框架并小结。
师:同学们说的很好,围成圆的曲线的长就是指圆的周长。
设计意图:本环节的设计是让学生初步感知本课的知识范围,做好心理铺垫;老师展示的目的是为下面“化曲为直”的方法打基础。
3、讨论圆的周长的测量方法。
(1)师:要想测量这个圆的周长,能用直尺直接测量吗?为什么呢?
(2)、师:你们有没有办法来测量它的周长?把你的方法在小组内交流一下。
学生分组讨论,小组代表发言:
生1:不能,因为圆的周长是一条曲线,而直尺是直的!
生2:把圆片放在直尺上滚动一周,在圆上取一点作个记号,并对准直尺的零刻度线,然后把圆沿着直尺滚动,直到这一点又对准另一刻度线,这时圆正好滚动一周。圆滚动一周的长就是圆的周长。(滚动法)
生3:用一条长线把圆绕一周,捏紧这两个正好连接的端点,把线拉直,这两点之间的线的长就是圆的周长。(绕线法)
(3)、教师跟随小组代表发言,用边演示边总结测量方法。
教师小结:看来,同学们不论是用绕线法也好,滚动法也罢,都是非常巧妙地将曲线转化成了直直的一条线段再来测量,也就是一种化曲为直的方法,你们真是太棒了!
师:(出示一个很大的圆形摩天轮)你能用这两种方法测量它的周长吗?
看来,这两种测量的方法还是有一定的局限性的,那你们有什么好办法?
设计意图:通过尝试性的动手测量,使学生较为牢固地掌握了周长的概念,也很好地培养了学生的动手操作能力,在这个过程中使学生切身体会到“化曲为直”的转化思想。
(二)自主学习,探究新知。
1、猜测。
师:正方形的周长与它的边长有关,那么,请你大胆猜想,圆的的周长与什么有关呢?(播放)
2、探讨圆的周长与直径的关系。
师:圆的周长和直径到底有什么样的倍数关系呢?现在我们就以小组为单位,测量3个大小不同的圆片的周长与直径,并通过合作的方式完成实验报告单,各组组长要分工明确。(出示操作要求并播放轻音乐)
设计意图:训练了学生的思考习惯,也为下面学习找准方向,充分尊重了学生的主体地位。本环节重在加强学生小组合作、合理分工、条理思考、大胆推理与清楚表达的指导,旨在为每一位学生的自主学习创造机会与条件,使每一位学生在自己的参与、思考与经历中获得经验认识,培养学生良好的数学学习方法、习惯和数学思考能力。
3、共同发现。
师:同学们,和大家分享一下你们测量的数据和计算结果,好吗?仔细观察实验报告单上的计算结果,你们有什么发现?
生:我发现圆的周长都是直径的3倍多一些。
每个小组汇报完后,把实验报告单粘贴在黑板上)
4、介绍圆周率。
师:你们可真了不起,刚才,同学们测量了大大小小不同的圆,但却有着相同的发现,那就是任何圆的周长都是它直径的3倍多一些。其实,早就有人研究了周长与直径的关系,发现任意一个圆的周长与它的直径的比值都是3倍多一些。这个倍数是一个固定不变的数,我们它叫做圆周率(板书)。(介绍误差)用字母π来表示。读法与写法。
师:其实,有关圆周率的知识还有很多,那么我们就一起走进兔博士网站了解一下圆周率的由来。(播放)
师:看完这些资料,你有何感想?
设计意图:通过播放有关祖冲之的资料,引导学生发表感触,及时激励学生,对学生进行爱国教育,增强民族自豪感!
5、推导圆的周长公式。
师:在计算时为了方便,我们只取它的近似值,π≈3.14,你能根据我们的结论推导出圆的周长公式吗?
生:因为圆的周长总是它直径的π倍。所以圆的周长=直径X圆周率。如果用C表示圆的周长,那么C=πd或C=2πr。
关于圆的周长教案的内容就到这了,希望可以帮助到大家,若还想了解更多相关内容,可以多多关注范文网哦!
原创文章,作者:笑笑,如若转载,请注明出处:https://www.livip.net/doc/424.html